Tag Archives: drones

Planning for a post-work future

It’s that time of year where many bloggers make their predictions for next year. Rather than do that, I wanted to look a generation out, when those who entering college today send their children to college, and think about the events of automation on our future. This is not a prediction per se. Instead it is more of a RFI (a request for ideas).

As a caveat, I work in automation (machine intelligence and machine learning, sensor and computer vision, automated controls and planning systems). I also have a prior background in policy—one that is driving me to think about the bigger picture of automation. However, this post is not about the work I am doing now. It is about the near-term “practical realities” I can imagine.

We are at the onset of an “Automaton Renaissance.” Five years ago, most people outside of tech thought about self-driving cars as something from the Jetsons. Last week, the governor of Michigan signed a bill allowing live testing of self-driving cars without human testers. Chatbots are not just the stuff of start-ups. Last month, I attended a conference where Fortune-500, large-cap companies were sharing results of pilots to replace back office help desks and call centers with chatbots. Two weeks ago, I was at a supply chain conference where we discussed initial pilots that a replacing planning and decision-making with machine learning (pilots involving billions of dollars of shipments). Automation is not coming—it is here already, and accelerating. Last week, I was at a conference for advanced manufacturing, we the speakers discussed the current and future impacts (good and bad) on jobs in the US.

So what will life (and work) be like in 20 years? Here are just a few things that we already have the technology to do today (what is left is the less-futuristic problems of mass production, rollout, support and adoption):

  • If you live in the city and suburbs, you will not need to own a car. Instead you can call an on-demand autonomous car to pick you up. No direct insurance costs, no auto loans, less traffic and pollution. In fact the cars will tell Public Works about detected potholes (street light and infrastructure sensors will tell Public Works when maintenance is needed).
  • If you work in a manufacturing plant, you will have fewer workers who are monitoring and coordinated advanced manufacturing (automation + additives). The parts will have higher durability and fewer component suppliers—also a reduction in delays, cost and pollution.
  • If you work on a farm you will demonstrate (supervised learning) to drones how you want plants pruned and picked, holes dug, etc. These drones will reduce back-breaking labor, reduce accidents and automatically provide complete traceability of the food supply chain (likely via Block Chain)
  • If you do data entry or transcription, your work will be replaced with everything from voice recognition-based entry, to Block Chain-secured data exchange, to automated data translation (like the team is doing at Tamr)
  • 95% of call centers will be chatbots. Waiting for an agent will be eliminated (as well as large, power-hungry call centers). The remaining 5% of jobs will be human handling escalation of things the machines cannot.

These are just five examples. They are all “good outcomes” in terms of saving work, increasing quantity and quality of output, reducing cost (and price), and even improving the environment. (If you are worried about the impact of computing on energy, look at what Google is doing with making computing greener.)

However, they will all radically change the jobs picture worldwide. Yes, they will create new, more knowledge-oriented jobs. Nevertheless, they will greatly reduce the number of other jobs. Ultimately, I believe we will have fewer net jobs overall. This is the “post-work future” — actually a “post-labor future”, a term that sounds a bit too political. What do we do about that?

We could ban automation. However any company or country that embraces it will gain such economic advantage that it will force others to eventually adopt automation. The smarter answer is to begin planning for an automation-enhanced future. The way I see it, our potential outcomes fall between the following two extremes:

  1. The “Gene Roddenberry” Outcome: After eliminating the Three D’s (dirt, danger, and drudgery) and using automation to reduce cost and increase quantity, we free up much capacity for people to explore more creative outcomes. We still have knowledge-based jobs (medicine, engineering, planning). However, more people can spend time on art, literature, etc. This is the ideal future.
  2. The “Haves vs. Have Nots” Outcome: Knowledge workers and the affluent do incredibly well. Others are left out. We have the resources (thanks to higher productivity) but we wind up directing this to programs that essentially consign many people to living “on the dole” as it was called when I lived in the UK. While this is humane, it omits the creative ideas and contributions of whole blocks of our population. This is a bad future.

Crafting where we will be in 20 years is not just an exercise in public policy. It will require changes in how we think and talk about education, technology, jobs, entitlement programs, etc. Thinking about this often keeps me up at night. To be successful, we will need to do this across all of society (urban and rural, pre-school through retirement age, across all incomes and education levels, across all countries and political parties).

Regardless of what we do, we need to get started now. Automation is accelerating. Guess how many autonomous vehicles will be on the roads in the US alone by 2020 (virtually three years from now):

10 million

Note: The above image is labeled for re-use by Racontour. Read more on the post-work word at The Atlantic magazine and Aeon magazine.

If a tree falls in the woods and no one heard it, did it happen? Not in Streaming Analytics

Interest in “Streaming Analytics” has exploded over the past few years. The reasons are two-fold. First, the rise of the Internet of Things has made it possible for the first time ever to get data directly (and automatically) from infrastructure, cars, homes, factories and more—all without a human people ever having to do something. To put this in perspective, last quarter more new automobiles were connected to mobile networks than new cellphones were. Second, the technology is now readily available to implement streaming analytics at massive scales without needing to invent your own frameworks. Not one, but three technology projects (Storm, Spark, and Flink) are available for your choice. One of them, Apache Spark, is now the second-fastest growing open source project in history.

Streaming Analytics is a very fun field to be in (I have been in for 22 years—in the national security arena, eCommerce, med-tech, and now Industrial IoT). Taking in data faster than any human being could examine it and analyzing in near real-time to make split-second decisions creates provide omnipresent knowledge and enormous business value. However, Streaming Analytics presents a new challenge that does not exist in traditional After-the-fact Analytics:

You need to figure out how to make decisions on data that you do not know about yet—and may not ever find out about it time to make it worth your time.

Three real-world examples

To put it in philosophical parlance, how does anyone know if a tree in the forest fell down if no one ever sees (or hears) that it fell? As philosophical as this sounds, it can have multi-million-dollar impacts in the real world. Here are three examples:

Example 1: eCommerce Chatbot

My chatbot is engaged with a new prospective customer who may eligible—based on her mobile number—for our bank’s highest value credit card. Unfortunately, that data is delay in getting to my bot. As a result, at this point in time, I do not know whether the customer is: very valuable, average, or a credit risk. What does my chatbot do?

chartbot_400px

Example 2: Guaranteed Shipping

I have a booking to delivery high-value cargo to a customer site by end of business today. It is now 15 minutes after the day is over. I might be inclined to escalate to my carrier that the container has not arrived. However, at this point in time, I cannot tell if: the container arrived but the signal from the carrier is delayed getting to me or of the container did not arrive. What do I do?

container_3

Example 3: Infrastructure Security Monitoring

I run a cattle farm that is hundreds of thousands of acres. I have equipped all gates in my Smart Ranch with sensors to alert me if any are open (so I can prevent the cattle from getting away). The sensors send updates every 15 minutes. However, one of the gate sensors is a few minutes late. At this point in time, I do not know if the gate is open or closed. Does my system trigger an alert?

140647

What makes Streaming Analytics different

All of these challenges are based on lack of information. Lack of information is typical in analytics (as well as messy data, data gaps, corrupt data, duplicate data and many other issues). However, in the streaming analytics there is one critical difference: you will eventually have the data you need right now to answer your question. However, by the time you receive it, it will be too late to make your decision: the eCommerce customer will be gone; your freight contract will be honored or broken; the cattle will be safe or have gotten away.

What makes this especially different is that all the parties involved with your business will know the answer as well. If my chatbot fails to offer a valuable customer the best credit card, the line of business GM will ask why “it was so stupid.” If I call the customer up to tell them the freight has not arrived and they respond with “but it got here 10 minutes before closing”, I will look stupid. It all boils down to this:

56818465People may not know when After-the-fact Analytics miss a point; however, everyone will know that your Streaming Analytics made a mistake.

 

That can be stressful 😉

What’s a person to do?

The essential thing to remember when designing your Streaming Analytics solution is this:

Close enough and in-time is much more valuable than perfect and too late

This means you need to build your solution to make a decision based on the information available (rather than waiting until the critical moment has passed). The trick is determining what is “close enough”. The answer to that question depends on your business context. Specifically, given your context, is it better to accidentally do something you should not have (a Type I error) or is it better to not doing something you should have done (a Type II error).

Let’s looks at how this works in each of the three examples:

Example 1: eCommerce Chatbot

Our business context determines it is far worse to get a prospective customer excited about an offer that we cannot deliver instead of offering a less valuable package (i.e., we are Type II biased, something typical in ad-tech and eCommerce). We do not make the highest-value offer.

Depending on our Risk Policies we make the normal offer (one for which a majority of customers qualify) or shunt the customer to a slower process (email vs. chat) to wait time for the data to catch up (essentially shifting to batch). Most commerce companies have created default packages that allow the former action, allowing them to make more money in the “80% most likely case”. We could also apply a machine learning algorithm to guess the best alternative offer, maximizing revenue and minimizing the risk of an angry customer (or wasted time).

Example 2: Guaranteed Shipping

Our business context indicates that it does not make sense to alert that we are late if we do not know it (yet)—especially given the likelihood that this could result in some “egg on our face” when the customer asks why we did not know the container arrived 20 minutes ago. As a result, we do not alert we are late at 5:00pm. We make the call when we know for sure that the container was on time vs. late (i.e., when the delivery message actually arrives). This scenario is also Type II biased.

However, we do not want to expose ourselves to a completely irate customer in high-value circumstances. As such, we place a secondary streaming analytic in place: if we do not receive confirmation within more than 60 minutes from scheduled delivery we trigger an alert to reach out to our delivery carrier and find out the real status (i.e., by taking the expensive step of talking to a person vs. a sensor). We determined the “magic number” of 60 minutes by doing After-the-fact Analytics that determined waiting this long will automatically resolve the 80% of false positives while still giving us enough heads up to detect the true issues. If we are even smarter we can have our After-the-fact Analytics system automatically calculate the magic number to delay alerts based on location, time-of-day, day-of-week and other features.

Example 3: Infrastructure Security Monitoring

Our business context indicates that is not good to close the farm door after all the cattle got away. As such, we have programmed our Streaming Analytic system to alert us if the gate is opened (before a human has sent a “I am opening the gate” message) OR if we have not received confirmation that the gate is closed for period of longer than 15 minutes. Essentially we are Type I biased (not uncommon in safety and security situations).

Unfortunately this bias will result in lots of alerts. Essentially any time the sensor message is delay in the cell network our alarm will go off. Luckily, we have some more advanced analytic techniques to help with this. Namely, we can use a Lambda Architecture model that provides self-healing: the initial lack of confirmation that the gate is closed triggers an alert; the arrival of the delayed message that the gate WAS closed then cancels this alert (with a resolution message). This is still a bit chatty. However, it short-circuits false positives and prevents the need to send a worker (or a drone) all the way out to the gate to check if it is open.

Conclusion

Yes, Streaming Analytics is a harder than After-The-Fact Analytics. However, it the near real-time omnipresence (not omniscience) offers tremendous benefits. You just need to think in philosophical terms when designing your analytic rules.

entropy