Tag Archives: Amazon Air

Drone Commerce, Part 2: Global Internet Access

In Part 1 of this series, I looked at Amazon’s use of drones for same-day delivery. In this post, I will examine Google’s proposed use of drones for ubiquitous Internet access and near-Earth monitoring from the point of view of someone who has built things that fly, the software that controls them and large-scale Internet platforms.

The Drones of Titan

The drones created by Titan (now Google) Aerospace are quite different from the quadcopters you can buy online or the military UAVs featured so prominently in the news since 9-11. They are high-endurance drones intended to stay continuously aloft at 65,000’ (20 km) for 3 to 5 years. Running on solar-rechargeable batteries, they are designed to function as in-atmosphere satellites, providing communications (like COMSATs) or sensor-based observation (like weather and surveillance satellites).

google-buys-drone-company-titan-aerospace-1

Packets of energy, not goods

Amazon’s is exploring use of drones to delivery physical goods. This brings on a host of complex aeronautic and air traffic challenges: the ability to carry payload while staying small enough to navigate inside cities; efficiently taking off and landing several times per day in the midst of wind gusts and other weather conditions; and the need to avoid trees, birds, power lines, buildings and host of other obstacles. Google’s drones avoid all of these challenges:

  • Flying at 65,000’ places them above all weather events and a majority of atmospheric turbulence. It also places them above birds, buildings, mountains and even commercial airline traffic
  • Staying aloft for years (or even just a few months) eliminates exposure to the highest-risk operation any non-military aircraft can do: takeoff or land. It also reduces equipment replacement costs and virtually eliminates re-fueling costs.
  • By transmitting and receiving photons (light and other electromagnetic waves) the drones do not need to be engineered to carry high payloads. They also do not need to be engineered for repeated loading and unloading of packages.

These changes significantly reduce operational risk and cost. From an engineer’s point of view, the technology is a great fit to its intended function. However…

Is this just and engineer’s fantasy?

Yes, the Google Drones appear to be great candidates for in-atmosphere satellites. However, keeping hundreds or thousands of drones aloft is a pricey enterprise with complexity akin to that of operating a mid-sized airport. Aren’t there technologies already available that already meet the needs these drones are intended to satisfy? Let’s look at the two commonly considered alternatives to help answer this:

Cellular (GSM/GPRS/3G/LTE/4G):

Cellular technology already exists in many, many parts of the world (even 95% of the people in Africa who live in areas with electrical power, live within coverage of cell towers). At first examination, using drones to give coverage to everyone outside cell tower coverage seems to be a display of “First World Hi-Tech Hubris”. If these drones were just intended to provide Internet (as Facebook was exploring), I would agree 100%.

However these drones can have cameras and other sensors to provide monitoring of the environment, climate change, and natural disasters that cell towers cannot. Given the benefits already provided by using Google Earth data for analysis of climate, population, infrastructure and more, one can easily see the doors that opened by feeding camera and sensor data from these drones to developers and researchers via Google’s Maps APIs (including weather and traffic layers and ‘satellite’ views).

Finally as these drones are powered by sunlight, they would continue to function and provide monitoring and Internet access even if a natural disaster took at power grids and energy pipelines for an area.

Satellite:

horizon-1One could easily argue that satellites (between Iridium, SPOT, INMARSAT, COMSAT, and all those government programs I cannot mention) cover all the gaps cellular technology misses. At 65,000’ of altitude, these drones would only be able to cover a 300-mile radius: satellites (depending on orbital parameters) can cover up to 160x this coverage area.

However, satellites are expensive (as we have learned with the disappearance of flight MH370), satellite is expensive (about $0.14-$0.18 per small 1-Kilobyte message). The reason for this high-cost is two-fold: the high-cost of launching a satellite and the distance they are above the earth (it takes over 1500x the power to transmit a signal to an Iridium satellite than it does to transmit a signal to a drone overhead at 65,000’).

This opens to door to communication with a whole new class of technologies, ones far less expensive than satphones. This includes everything from low-cost mobile phones to OLPC (One Laptop Per Child) laptops to sensors used to track endangered species and protect them against poaching.

This distance factor goes beyond power consumption to image resolution (Ground Sample Distance or GSD). Quite simply, a drone at 65,000’ can get photos with 6x the resolution of satellite in Low Earth Orbit (LEO) and 40x the resolution of satellites like SPOT.

A great addition, but not the only answer

The Google Drone concept is not a one-size-fits-all answer. It would take thousands of drones to cover the Earth, a very costly operation. While providing more coverage than cell towers, they would often be farther away and more costly to operate. While providing better bandwidth and GSD than satellite, they would have less coverage area. As such the answer, like all things in Internet access (and sensor technology) is a blended combination of fixed-line Internet, multiple terrestrial wireless technologies (from ZigBee to 4G), satellites and drones.

This begs an important question…

One question that has plagued me from the day I first saw Facebook’s interest in Titan was why communications companies like Vodafone (which is rather well known for its 21-country mobile SIM network) were not interested in companies like Titan. Overall, using drones for ubiquitous Internet would appear to be a much better strategic fit to a company that already charges customers for Internet access. Perhaps Google can make more money from higher-resolution image and sensor data than it would initially appear. Or perhaps these drones could serve as a potential grid network that could bypass carriers if the Net Neutrality wars go in a bad direction (just like Netflix is exploring with its peer-to-peer research).

Avion-Titan-Aerospace-dron-solar-2

Only time will tell.

Drone Commerce, Part 1: Same-day Delivery

As an aerospace engineer-turned-Internet software architect, it was probably only a matter of time before I wrote a post about the expanding use of Unmanned Aerial Vehicles (a.k.a. Drones). Now that we have two eCommerce giants entering the Drone Space makes it a good time as any to explore the practical viability of this from the point of view of someone who has built vehicles that fly, software that controls them, and large-scale eCommerce and data platforms.

In one corner we have Amazon’s exploration of drones for same-day delivery (interesting aside: Jeff Bezos, as owner of Blue Origin is also a commercial space entrepreneur). In the other corner with have Google’s recent purchase of Titan Aerospace for drone-based Internet service provision and Google Earth data capture (interesting aside: Google the ‘K’ in KML stands for Keyhole, something Google got when they bought Keyhole, Inc.—a company with a very interesting provenance to anyone who has worked in satellite technology for the IC).

Are these explorations of drone tech whacky uses of capital buy companies with more cash then they know what to do with or are they viable commercial pursuits with long, complex lead times? In part 1 of this series, I will look at the Amazon’s consideration of drones for same-day delivery. In part 2, I will look at Google’s ideas for Internet service provision and Google Earth data capture.

amazon-air

To use drones (on a repeated basis) for package delivery, you have to overcome many, many challenges, including very big aerospace-related ones:

  • Large payload without large size
  • Safe, efficient flying (and delivery) operation
  • FAA approval to fly in populated places

This leaves out other non-aerospace challenges, ones Amazon has solved very well, such as efficient logistics management, protecting drones against hackers, notifying customers of immediate delivery, and other classic delivery challenges.

Challenge 1: Large Payload without Large Size

To be profitable (from a gross margin perspective), you need to either be able to deliver a good amount of packages (think how many packages a UPS or FedEx truck carries). This requires payload capacity. However, to fly drones to where people live and work, you need small drones. It is not viable to fly (and land) a MQ-9 Reaper-sized drone a 20-meter wingspan on residential street or commercial rooftop. You will most likely need a drone with a 1-2 meter wingspan (or body-span for quadcopter drones). Unfortunately small drones do not have high carrying capacity:

Body Span or Wing Span Payload
1 m 1 – 10 kg
3 m 5 – 20 kg
5 m 20 kg – 100 kg
10 m 100 kg – 400 kg

Payload Capacity by Wingspan with Current Drone Technology

The cause of is simply the laws of physics (specifically flight kinematics). The more you carry, the heavier you are. The heavier you are, the larger your wingspan or propellers need to be to generate sufficient lift. The large heavier you are, and the larger your wingspan—the more fuel (or heavier batteries) you need—compounding the problem. This is a non-trivial problem to solve. It is the major reason we do not have the capability for more than sub-orbital commercial space flight or commercially viable hovercrafts people can ride in residential areas—even 45 years after the Moon landing. It is also a problem that exacerbated by the style of flying needed for repeated delivery of packages throughout the day.

Challenge 2: Safe, Efficient Flying Operation

To be a viable vehicle for delivery, drones have to safely take off, navigate through a complex three-dimensional space, and land—repeatedly throughout the day, day-in and day-out. As this is a big set of challenges, it is easier to look at each individually.

Takeoff and Landing: Takeoff and landing is a lot more challenging than simple level flight. First, take consumes a lot more than level flight—the energy penalty depends on you payload, wingspan and runway size, exacerbating the “payload vs. size” challenge discussed above. Second, when you are flying slowly at low altitudes (i.e., just as you are taking off or landing) you are much higher risk of crashing due to wind shear-induced lost of lift: when this happens at 36,000’ you get turbulence; when this happens at 36’ you count on the training and experience of your pilot to adjust rapidly to keep you from hitting the ground. Unfortunately, drones do not have pilots. As such, the round-trip communication to a remote operator is not fast enough for instant adjustments, drones typically rely on onboard software to make immediate corrections. However, this software is not handling the simple operation of landing a drone on a remote landing strip, it is managing landing in a city (perhaps on a building or perhaps in your driveway). This obstacle can be overcome with better software (and lots of machine learning). Nevertheless you still have the “energy penalty” of taking off and landing over and over again through the day.

Cruising Navigation: Drones that delivery goods are going to have navigate a complex three-dimensional space populated with buildings, power wires, antennae, birds, other drones, and weather (small size and repeated take off and landing are going to require them to fly well-below 12,000’, making them subject rain, hail, snow, lower visibility and much more turbulent airflow than one encounters at altitudes that planes need to reach before pilots let you get up and move around the cabin). After 20 years of military use, we have gotten pretty good at letting drones to this successfully. Unfortunately you are flying at an altitude that is very inefficient. As a result you still have the nagging “energy penalty” cited several times already.

Challenge 3: Getting FAA Approval

This is the one challenge on my list that is based on socio-political systems—rather than flight dynamics and physics. However, it is an especially big barrier to overcome, as Amazon would not be getting approval large-scale, complex drone operation: many drones taking off and landing, many times a day, in populated area instead of drone that cruise at high altitudes or are operate at low scale by hobbyists at parks.

The numbers that drive the scale for profitable operations make this challenge especially difficult. Today, the piloted planes have 9.4 accidents per million flights (statistically very safe). Let’s use this to run some numbers:

  • If drones are as safe as planes and I have only five drones operating in each of the 50 largest cities and they are only doing 10 deliveries each a day (not very efficient vs. UPS), I will see a drone crash every 40 days
  • If drones are a bit less safe (likely as they fly at low altitude, take and land very often in complex environment, and do not the support of air traffic controllers and highly-trained pilots on board), I will see a crash every month.
  • These are not “landed hard and broken the container” crashes. They are “collided with building, power wire, tree or other obstacle”-type and “got flipped over in the crosswind and “dropped several stories into a street or rooftop”-type crashes.

What would this look like in the aviation regulatory space? The first crash would lead to a fleet grounding, NTSB investigation, and perhaps some hearings. A second crash after the first set of issues are addressed would lead to an even longer grounding and likely a change in allowed places of drone operation—especially if a person was hurt. At best, this would make commercial operation low margin; at worst, a big drag on the company’s reputation, stock price and liability.

Conclusion

A hate to be a naysayer—especially as a person who went to school to build planes, rockets and satellites that would give us the ability to travel more places, faster and more conveniently. However, it is hard to be profitable while fighting the laws of physics in complex conditions. Aviation technology can be improved, but generally not at the same rate as Moore’s Law (precisely because you are dealing with objects with much more mass than electrons and photons). As such, I do not see drone-based delivery being profitable—especially given the low-cost and high-efficiency of ground-based delivery (something that is going to get even better as the Internet of Things makes fleet management more efficient and Amazon’s machine learning lets them pre-position items before you even order them).

Jeff Bezos is a very, very smart man. It is my guess that his work in drone technology is not really focused on a better goods delivery mousetrap but instead something else that can scale at lower cost and higher efficiency. If I had to guess, I would say it would be related to streaming content or using peer-to-peer networking to bypassing carrier restrictions. That’s more of a topic or my next post in this series.

Updates: